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I. INTRODUCTION

Four epidemiological categories were
initially devised for classifying water-related
infectious “diseases” with regard to the en-
gineering technologies required to prevent
or control them. The categories defined for
water transmission of infectious agents were
waterborne (classic and other); water washed
(intestinal and body surface); water-based
(dependent on intermediate aquatic host(s);
and water-related insect vectors (breed in/
bite near water).1,2,3 Waterborne diseases are
those transmitted through the ingestion of
contaminated water and water acts as the
passive carrier of the infectious agent.

The use of operative words such as
“waterborne” and “disease” is justified for
reports of outbreaks or cases of disease asso-
ciated with drinking water because tradi-
tional epidemiological investigation relies on
the occurrence of disease, which for drink-
ing water is primarily waterborne. The use
of “waterborne” as a generic term encom-
passing all infections arising from water use,
however, is too simplistic and poses diffi-
culties when attempting a theoretical analy-
sis of water-associated infections, because
not all develop from the ingestion of water.
Likewise, “disease” should not be used syn-
onymously with “infection”, which may be

either asymptomatic (without clinical expres-
sion) or symptomatic (clinically observable
syndrome and therefore a “disease”, when
the causal agent was identified). It could be
argued that if “disease” is not the end result
of a water-related infection with a patho-
genic agent then the role of water in its
epidemiology is unimportant. However,
many of the bacteria and viruses that may be
spread in low levels by the water route pro-
duce asymptomatic infections. This seeding
of susceptible individuals could result in an
endemic situation with the potential for an
epidemic to occur from direct person-to-per-
son, food, or water spread (through contami-
nation with greater levels of pathogenic
agents released from infected carriers). There-
fore, for the purposes of clarification and
general discussion, the use of “infection”
instead of “disease” is preferred.

This review attempts to describe present
knowledge about waterborne diseases, their
epidemiology, and the microbial agents com-
monly associated.

II. WATERBORNE DISEASES AND
ETIOLOGIC AGENTS

A wide variety of bacterial, viral, and
protozoan pathogens excreted in feces are
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capable of initiating waterborne infections,
although the potential for this, predicted from
latency, survival, and infective dose data,
which is usually higher for viruses and pro-
tozoa, remains unknown in many cases.
Waterborne spread of infection by patho-
genic agents depends on factors such as
pathogen survival in water and the dose re-
quired for establishing infection in suscep-
tible individuals. In addition to pathogen
survival, latency (the period between patho-
gen excretion and acquisition of actual in-
fectious power) and pathogen ability for
multiplication in the environment are factors
influencing the infective dose. The minimum
infective dose has been determined only for
some bacteria, viruses, or protozoa that are
excreted with feces and thus potentially water
transmitted.

Therefore, it is important to distinguish
different classes of pathogens.

1. Viruses may only remain static in num-
ber or die off. They cannot grow in the
receiving waters; they cannot, indeed,
multiply outside of susceptible living
cells. The infective dose of these agents
is low, typically in the range of one to
ten infectious units.

2. Enteric protozoa such as Giardia and
Cryptosporidium are highly resistant in
the aquatic environment and to most dis-
infectants and antiseptics commonly used
in water treatment. Like viruses, they
cannot multiply in the receiving waters.
The infective dose of Cryptosporidium in
humans is highly variable in terms of the
strain virulence4 and probably of the host
susceptibility.

3. The recognized waterborne bacterial
pathogens include enteric and aquatic
bacteria. The persistence of enteric bac-
teria, including Salmonella spp., Shi-
gella spp., and Escherichia coli, in the
aquatic environment depends on vari-
ous parameters, but especially being a

function of nutrients present and tem-
perature. Although enteric bacteria are
usually assumed to exist under starving
conditions, there is evidence that some
can grow in fresh water. Other bacte-
rial infectious agents such as Legionella
spp., Aeromonas spp., Pseudomonas
aeruginosa, and Mycobacterium avium
are indigenous aquatic organisms that
can both survive and proliferate in
drinking water. An additional mode of
water-related transmission is through
the direct inhalation of aerosols, spe-
cifically with Legionella pneumophila,
the etiologic agent of Legionnaires’ dis-
ease and probably with nontuberculous
mycobacteria such as Mycobacterium
avium. The infectious dose of historic
enteric bacteria are in the range of 107

to 108 cells but much lower with some
species, including Shigella spp.,
Campylobacter spp., and enterohem-
orrhagic E. coli O157:H7.

This discussion concerns the epidemiol-
ogy of waterborne diseases, that is to say the
rates of infection and characteristics of the
diseases principally associated with water-
borne transmission in developed countries.
The situation is markedly different in devel-
oped or developing countries. In many world-
wide countries, more illnesses and deaths
result from sheer lack of availability of wa-
ter in quantities sufficient for personal and
household hygienic uses than from impuri-
ties in drinking water. These deficiencies in
quantity or availability, along with malnutri-
tion and lack of medical care, are respon-
sible for the millions of deaths ascribed an-
nually to diarrhea and enteritis, which are
water associated, but much less commonly
waterborne. In 1997 diarrhea disease ranked
first in the WHO report’s assessment of
causes of morbidity (4.109) and sixth in
causes of mortality.5,6 It can be suggested
that up to 70% of diarrhea illness could oc-



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f F
lo

rid
a]

 A
t: 

16
:1

5 
31

 D
ec

em
be

r 2
00

7 

373

cur by contaminated food, and therefore 30%
could result from polluted water origin. It
should also be stated that food responsible
for outbreaks could be contaminated by
water.

The most complete data on waterborne
disease are those reported for the United
States by the Center for Disease Control and
Prevention (CDC) and the Environmental
Protection Agency (EPA). Two or more per-
sons must show the same clinical symptoms
before the incident is included in the statis-
tics. Water systems are classified as commu-
nity water systems, noncommunity systems,
and private or individual water systems. Na-
tional statistics dating back to 1920 on out-
breaks associated with drinking water were
analyzed by Craun2,7,8 in an attempt to esti-
mate the effects and adequacy of public health
programs, regulations, treatment technolo-
gies, and microbial monitoring. Epidemio-
logical course of waterborne disease in the

U.S. (Figure 1) is marked by a clear-cut
break of bacterial diseases during the period
1920 through 1998 with continuance of
shigellosis, emergence of campylobacteriosis
and E. coli O157:H7 hemorrhagic colitis,
and correlatively by extended incidence of
protozoan outbreaks from 1970s, including
the largest documented incident in Milwau-
kee in 1993 since record keeping began in
1920. During the last decade, the etiology of
acute gastroenteritis (AGI) was not deter-
mined in almost half of the outbreaks. How-
ever, in many of these outbreaks, a viral
etiology (Norwalk agents, human rotaviruses,
and adenoviruses) has been suspected and
was supported by the detection of Norwalk
agents in the US in 1980 to 1990s.3,9 Several
reports and reviews have been published
recently in the U.S. on the concern.6,10,11,12,13,14

Unfortunately, there is a paucity of data
available on the occurrence in Europe of
outbreaks of water-related infections. This

FIGURE 1. Etiology of waterborne outbreaks, United States of America, 1920–1996.
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may be because water-related outbreaks are
rare in Europe, but it is more likely attrib-
uted to the problems associated with epide-
miological investigations of such outbreaks.
Some reports on European waterborne dis-
ease have been published, including the
U.K.15 and Nordic countries,16 while Hunter17

conducted the most comprehensive review
of waterborne disease world-wide.

It is generally agreed that waterborne
outbreak reports are incomplete. A growing
number of reports6,8,18 indicate that water-
borne disease is far more prevalent than re-
ported outbreaks. Craun7,8 suggests that only
one-half to one-third, or even one-tenth, of
waterborne outbreaks occurring in the U.S.
are detected, investigated, and reported. Ac-
cording to Morris and Levin,18 annual inci-
dence in the U.S. could be 7 to 8 million
cases of illness and 1200 deaths attributable
to waterborne infectious disease.

III. BACTERIAL ENTEROPATHOGENS

A. Salmonella – Shigella

Waterborne outbreaks of bacterial origin
in the U.S. have declined dramatically from

1920 through 1960 to 1970. This applies
particularly to typhoid fever, which is seen
rarely since 1970 as a result of the wide-
spread application of disinfecting and filtra-
tion treatments, introduced between 1890 and
1900. Deaths from waterborne infections
were almost entirely attributed to typhoid
fever from 1920 to 1945 to 1950.8 On the
other hand, the number of reported outbreaks
of salmonellosis has been relatively stable
over the years, whereas those of shigellosis
have increased (Figure 2). Since 1961, Shi-
gella sonnei has become the most prevalent
bacterial agent, replacing S. flexneri that
dominated previously. The change in Shi-
gella species causing the majority of cases
of illness can probably be explained by a
similar change in incidence of Shigella sero-
types in patients.

B. Campylobacter

Waterborne outbreaks caused by Campy-
lobacter jejuni in the U.S. (three outbreaks
1971 to 1980, 10 outbreaks 1981 to 1990,
three outbreaks 1991 to 1996)2,8 demonstrate
that Campylobacter is now a leading cause
of bacterial gastroenteritis in the commu-

FIGURE 2. Comparison of typhoid fever and shigellosis occurring in the waterborne
outbreaks (USA, 1930–1990). �, typhoid fever outbreaks, �, shigellosis outbreaks.
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nity. It is isolated as commonly as Salmo-
nella and Shigella from patients with diar-
rhea; it is the most frequently identified bac-
terial cause of diarrhea in the U.S. and the
U.K. Human campylobacteriosis is a severe
disease, often leading to serious sequel and
sometimes resulting in death. Following the
introduction of an improved surveillance sys-
tem in England and Wales, the Communi-
cable Disease Surveillance Centre observed
26 outbreaks between 1992 to 1995 in which
there was evidence for waterborne transmis-
sion of infection.19 In Nordic–European coun-
tries, campylobacters have been known as
important human pathogens since the late
1970s. More recently, they were associated
with presumed waterborne outbreaks;20,21 in
Finland, a waterborne epidemic in a hospital
caused nearly hundred persons to become
ill. 22 Other outbreaks have been described in
Canada23,24 and in New Zealand.25

Campylobacter species appear to be par-
ticularly well adapted to the avian intestinal
tract, thus causing poultry to be the primary
vehicle of transmission to humans.26

Campylobacter enteritis is a zoonosis and
animals used for food production, such as
poultry, account for a large reservoir of en-
vironmental pollution. Virtually all surface
waters contain campylobacters, even in re-
mote areas, where contamination stems from
wild birds. Waterborne outbreaks typically
follow the consumption of untreated surface
water that may be contaminated with bird
feces. 27

The occurrence of thermophilic campy-
lobacters was studied in river and lake wa-
ters, some of which was the source of the
drinking water. C. jejuni was recovered fre-
quently from samples of fresh water.28,29,30

Campylobacter-type bacteria were found,
however, in treated water because they are
susceptible to chlorination.31 The first isola-
tion of C. jejuni from groundwater32 sup-
ports the theory that groundwater may be a
vehicle for campylobacter transmission. In

water microcosm experiments, factors such
as temperature, oxygenation, anaerobic con-
ditions, nutrient, and biofilms influence the
survival times.33,34 Survival was enhanced
by the presence of autochthonous microflora
and nutrient with decreasing temperature and
anaerobic conditions. The existence of vi-
able but noncultivable campylobacter, and
their power for retaining pathogenicity and
virulence35,36,37 was a debatable point until it
appeared elucidated by Cappelier et al.38 and
Talibart et al.39

The spread of Arcobacter organisms (pre-
viously designated as aerotolerant Campy-
lobacter) via the drinking water path must
be suspected.40,41 Some cases of acute diar-
rhea, however, were associated with
Arcobacter butzleri;42 little is known about
the clinical significance of infections in hu-
mans.

C. Escherichia coli O157:H7

Escherichia coli O157:H7, first recog-
nized as a pathogen in 1982,43 is now known
as an important cause of bloody diarrhea
(hemorrhagic colitis) and renal failure
(hemolytic uremic syndrome) in humans. Its
pathogenicity has been attributed in part to
the production of toxin cytotoxic for Vero
cells (a fibroblastic green monkey kidney
line cell). The toxin was appropriately named
Verotoxin (VT), and the group of E. coli that
produce VT became known as the Verotoxin-
producing E. coli (VTEC).44 Subsequently,
other verotoxin-producing E. coli strains have
been associated with hemorrhagic colitis and
hemolytic ureic syndrome.44 E. coli O157:H7,
however, is recognized as the most common
cause of VTEC-related human illness. VTEC,
including E. coli O157:H7, are strongly as-
sociated with cattle, and they can clearly
pass through stomachs of ruminants. The
transmission of VTEC O157 is often food-
borne, particularly from contaminated ground
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beef or raw milk, or person-to-person, and
contact with farmed animals has also re-
sulted in human infection. Farmed and wild
animals grazing in water catchment areas,
however, are a potential source of fecal con-
tamination, and therefore of waterborne
VTEC O157 infection. VTEC O157 is par-
ticularly adapted for surviving in the aquatic
environment, as suggested by outbreaks as-
sociated with swimming in lakes (Wang and
Doyle, 1998).45,46 It is capable of surviving
for many days, especially at cold tempera-
tures.

The waterborne route of VTEC O157
infection was first clearly demonstrated
by an unusually large outbreak by
unchlorinated municipal water in the Mis-
souri Community.47 Since then, water-
borne VTEC O157 has been described in
sporadic cases and in outbreaks of ill-
ness. Chalmers et al.48 have analyzed pub-
lished outbreaks of VTEC O157 associ-
ated with recreational waters, private and
municipal supplies. Despite the potential
for large contamination of environment
with VTEC O157, however, waterborne
infection is relatively rare because VTEC
O157 is as susceptible to chlorination as
bacterial indicators.48

Epidemiological investigations have
elucidated the mechanisms by which E. coli
O157:H7, Shigella spp., and campylobacters
have become a source of concern recently.
The most striking feature is the low inocu-
lum of organisms that may trigger disease.
As few as 10 to 100 organisms of the most
virulent S. dysenteriae type 1 are sufficient
to cause clinical dysentery, while the other
species may require a 10 to 100 times more
elevated dose.49 The dose required to trig-
ger campylobacteriosis is also low, prob-
ably no more than a few hundred bacte-
ria.50,51 E. coli O157:H7, like Shigella and
C. jejuni, appears to have a low infectious
dose, approximately some hundred organ-
isms or less.52

D. Yersinia enterocolitica

Bacteria of the genus Yersinia have been
isolated commonly from the environment,
including water supplies of various types.
Environmental strains therefore should be
differentiated from serotypes O:3, O:9, O:5,
O:27 and O:8 of Y. enterocolitica, which are
the most frequently ones associated with
human infections in Europe, Japan, Canada,
and the U.S.53 These pathotypes are
psychrotrophic, and hence can multiply in
fresh waters and could constitute a major
hazard to drinking water. Epidemiological
data concerning waterborne yersiniosis, how-
ever, are scarce (Schieman, 1990)53 and in-
volve only a small number of individuals. A
large outbreak of intestinal illness at a Mon-
tana ski resort in 1977 was suggested to be
waterborne yersiniosis,54 but the many strains
isolated from water sources were later iden-
tified as nonpathogenic, leaving the cause of
this outbreak uncertain.17 Three prospective
studies from Norway55,56 and from New
Zealand57 seem to demonstrate that, how-
ever, Y. enterocolitica could be waterborne
in these area.

Y. enterocolitica became the repository
for a large number of “atypical” or
Y. enterocolitica-like strains. Usually iso-
lated from terrestrial and fresh water ecosys-
tems, they are often referred to environmen-
tal strains, including nonpathogenic serotypes
of Y. enterocolitica and the related species
Y. aldovae, Y. bercovieri, Y. frederiksenii,
Y. intermedia, Y. kristensenii, Y. mollaretii,
and Y. rohdei.58 These aquatic environmen-
tal strains were, however, relatively com-
mon in the examined water supplies.59,60,61

E. Vibrio cholerae

Cholera caused by toxigenic Vibrio
cholerae is a major public health problem
concerning developing countries, where out-
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breaks occur in a regular seasonal pattern
and are associated with poverty and poor
sanitation. Among the 193 currently recog-
nized O serogroups of V. cholerae, only
serogroups O1 and O139 have been associ-
ated with epidemics of cholera. The other
serogroups usually referred to as non-O1,
non O-139, can cause sporadic diarrhea.62

This sharp distinction between serogroups is
related to virulence associated genes. The
strains belonging to serogroups O1 and O139
(more than 95%) produce cholera toxin (CT)
and colonization factor known as toxin-
coregulated pilus (TCP) that is coordinately
regulated with CT production. In contrast,
the strains of non-O1 non-O-139 (more than
95%) serogroups lack these two virulence
genes.

From 1817 to 1994, seven distinct
pandemics of cholera occurred; all these were
caused by V. cholerae O1. During the first
six pandemics, cholera remained principally
confined to South and Southeast Asia,
whereas the seventh pandemic reached West
and East Africa and South America. In late
1992, V. cholerae belonging to a non-O1
serogroup (now referred as O139 Bengal)
caused explosive epidemics of cholera
through India, Bangladesh, and neighboring
countries.

Systematic surveillance of cholera in
these countries from 1992 to 2000 revealed
temporal alternation or coexistence of
V. cholerae O1 and O139 in different re-
gions.63,64,65 A clone of serogroup O37 dem-
onstrated epidemic potential in the 1960s.66

The close evolutionary relationships among
O1, O139 and O37 epidemic clones indi-
cates that new cholera clones were likely
arisen from a lineage that was already epi-
demic or closely related to such a
clone.63,66,67,68 An endemic focus of chol-
era was reported in the U.S. in 1970 to
1990s. Most cases were associated with
the consumption of undercooked crabs or
shrimp, or raw oysters from the Gulf of

Mexico.69 In Europe, several countries were
affected (concerned) by cholera in the
1990s.70,71,72,73

V. cholerae is now recognized as an
autochtonous member of the microflora in
many aquatic environments such as in river-
ine and estuarine areas. The importance of
water ecology is suggested by the close as-
sociation of V. cholerae with surface water
and population interacting with the water-
food also plays an essential role, although in
many instances water is the source of con-
tamination of foods.74 Many ecological as-
pects remain unknown to explain seasonal
appearance epidemic V. cholerae strains and
outbreaks of cholera. Recent data suggest
that Vibrio features can be involved:

1. The state of an aquatic reservoir of
V. cholerae O1 or O139 being ca-
pable not only to survive in water but
also to form a complete component
of the ecosystem.75 It has been postu-
lated that under stress conditions the
vibrios can be converted to a viable
but nonculturable form (VNC)76,77,78 that
can be reverted back to live infec-
tious bacteria.

2. The major pathogenic gene in toxinogenic
V. cholerae are clustered in several chro-
mosomic regions (CTX genetic element
and TCP pathogenicity island) that are
capable of being propagated horizontally
to non-O1 and non-O139 strains by
lysogenic conversion.63 More recently,
Chakraborty et al.62 have demonstrated
the occurrence and expression of critical
virulence genes in environmental strains
of V. cholerae that appear to constitute an
environmental reservoir of virulence
genes. These new data on the ecology of
V. cholerae appear to be of great signifi-
cance. Likewise, that non O1 and non
O139 strains are more commonly detected
than O1 and O139 strains, in fresh water
and estuarine areas, is also relevant. 63,79,80
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In outbreaks with a bacterial etiology,
the CDC and the EPA make efforts to relate
waterborne-disease surveillance with pro-
cessing deficiencies. Thus, it has been estab-
lished that untreated surface or ground wa-
ter, inadequate disinfecting procedures or
distribution system were the major causes of
waterborne outbreaks; control of such defi-
ciencies is usually within reach. These con-
clusions substantiate the basic concepts of
management of enteric diseases by multiple
barriers and monitoring by using indicators.6

IV. PUTATIVE BACTERIAL
PATHOGENS THAT GROW IN
WATER SUPPLIES

Like fecal pathogens that may have ac-
cess to the aquatic environment and survive
or remain viable but nonculturable, other
bacterial pathogens are able to multiply in
water even with low levels of organic nutri-
ents. They are opportunistic pathogens in
humans, but concern about their occurrence
in drinking water is disputed. The most im-
portant organisms to consider are Pseudomo-
nas aeruginosa, Aeromonas, Legionella, and
Mycobacterium avium complex.

A. Pseudomonas aeruginosa

Pseudomonas aeruginosa is an ubiqui-
tous microorganism, inhabitant of fresh wa-
ters, soil, and plants. This bacterium has been
isolated from numerous vegetables, such as
tomatoes, radishes, cucumbers, onions, and
lettuces81 at rates capable of reaching 103/g.
Its presence is constant and abundant in waste
waters82,83 and consequently in surface wa-
ters that receive polluted effluents. Its growth
in water is not directly linked to the organic
matter content, because it can develop abun-
dantly in the purest of waters. P. aeruginosa
is a species of considerable versatility and a

significant pathogen that can cause infection
in a variety of plants, insects, and warm-
blooded animals. In man it is an opportunist
pathogen, well known in the hospital envi-
ronment; it seems likely to be the cause of 10
to 20% of nosocomial infections. Its extreme
resistance to antibiotics explains why this
ubiquitous bacteria has been selected to colo-
nize the skin and mucous membranes of
patients.

As some P. aeruginosa strains are capable
of producing enterotoxins, the enteropathoge-
nicity of this species was sometimes surmized.
Since 1894, many later publications have rec-
ognized this bacterium as an enteric pathogen
and causative agent of diarrhea in infants and
children.84,85,86,87 Enteric disease associated with
septicaemia was described earlier by Dold in
191888 as “Shangai fever”, a prolonged febrile
illness that affected both children and adults.
As expounded by Hardalo and Edberg89 the
colonization of children by P. aeruginosa
quickly ceases once the environmental sani-
tary conditions are corrected. Moreover, each
of these “infections” was diagnosed before there
were adequate means of precluding a viral or
protozoan etiology. Community acquired
P. aeruginosa gastrointestinal disease with sep-
sis rarely occurs in healthy infants, that is,
those who lack identified underlying immuno-
logical or haematological problems.90 On the
other hand, P. aeruginosa can be a colonizer of
the gastrointestinal tract in immunocompromised
and hospitalized adults and children. There
have been no significant outbreaks reported in
recent decades, possibly as result of better
hygienic control measures and diagnostic tech-
niques.90 Moreover, a 1969 study91 demon-
strated that the ingestion of up to 106 viable
P. aeruginosa did not lead to infection or colo-
nization, but only to a brief period of recovery
of the organism from the stool.

In the past, Hoadley92 considered the
presence of P. aeruginosa in drinking water
as a public health risk. However,
P. aeruginosa is predominantly an environ-
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mental organism and fresh surface water an
ideal reservoir. As a consequence of con-
temporary lifestyles, P. aeruginosa reaches
relatively high numbers in food and on moist
surfaces. Daily, substantial numbers of the
species are ingested with our food, particu-
larly with raw vegetables, while our body
surfaces also are in continuous contact with
the organism. The risk to the general popu-
lation originating from P. aeruginosa in
drinking water is insignificant, and Hardalo
and Edberg89 think that attempts at guideline
for P. aeruginosa in drinking water would
not yield public health protection benefits.
On the other hand, this bacterium is prima-
rily a nosocomial pathogen.93 There is abun-
dant evidence that specific hosts are at risk
for an infection with P. aeruginosa, includ-
ing patients with deep neutropenia, cystic
fibrosis, severe burns, and those subject to
foreign device installation.94,95,96 For these
highly vulnerable hosts water supplies in
hospitals with P. aeruginosa should be
avoided.

B. Aeromonas

Many experimental, clinical, and epide-
miological data tend to lend credence to the
assertion that Aeromonas may be etiologi-
cally involved in diarrhea illness.97,98,99 Some
authors are more cautious and consider that
only some strains are likely to be patho-
genic, a situation similar to that with E. coli
and Y. enterocolitica.100 Beyond any doubt,
Aeromonas may be isolated as many times
from the feces of patients with diarrhea as
persons without diarrhea, suggesting that
Aeromonas would as a rule be a nonpatho-
genic “fellow traveler”. The most striking
argument against the role of Aeromonas in
human diarrhea emerged from studies of
Morgan et al.101 with human volunteers; de-
spite that high challenge doses were used,
this investigation failed to establish Aero-

monas spp. as an enteropathogen. However,
the pathogenicity of aeromonads may be
strain or pathovar related.

Aeromonas spp. are widely associated
with environmental waters; most available
strains were not from human fecal origin,
but represented the natural habitat of the
organism. The concentration of mesophilic
aeromonads range from 106 to 108/ml in crude
sewage to 10 to 103/ml in clean river water
like in superficial ground water.102,103,104,105

Aeromonads readily multiply in domestic or
industrial wastewater and are also found in
siphons, sinks, and drainage systems.103 Tem-
perature is an important factor for enhancing
the colonization by aeromonads in wastewa-
ter. That is probably the reason why
Aeromonas spp., which are psychrotrophic
organisms, outgrow coliforms in sew-
age.103,106,107 Hence, aeromonads are natural
residents in wastewater and fresh surface
water, their rate is closely related to organic
load and temperature. On the other hand, it
appears that aeromonads survive poorly in
nutrient-poor waters in comparison with other
autochtonous oligotrophic bacteria.103,108

Since 1962, we have demonstrated that 30%
of drinking water samples found positive for
“fecal-coliforms” indeed contained strains
of Aeromonas that would have falsely indi-
cated that the sample was positive in the
fecal coliform test.109 These observations
have since been confirmed by many
teams.103,110,111

The frequent presence of Aeromonas in
drinking water raised the question of its role
as an enteric pathogen, because production of
enterotoxins and/or adhesins had been dem-
onstrated.74,112,113 Burke110 observed that
Aeromonas spp.-associated gastroenteritis was
closely correlated with mean number of
Aeromonas spp. in water samples within the
distribution systems. The epidemiological
relationship between aeromonads isolated
from humans and those isolated from distri-
bution system has been studied by typing.114
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These investigations demonstrated conclu-
sively that the aeromonads isolated from the
public water supply were unrelated to those
isolated from patients with gastroenteritis.
With regard to the epidemiological relation-
ship with drinking water, in contrast to other
waterborne pathogens, no clearly defined
outbreaks of diarrhea illness due to Aeromonas
have ever been reported, although this bacte-
rium is frequently isolated from water.115

C. Legionella

The genus Legionella had at least 42 named
species,116 among which L. pneumophila
serogroup 1 is most frequently related to hu-
man disease. Legionella infections can lead to
two forms of disease, namely, legionellosis or
Legionnaires’ disease, an acute purulent pneu-
monia and Pontiac fever, a self-limiting
nonpneumonic disease consisting of fever and
mild constitutional symptoms. Infection is the
result of inhalation of contaminated aerosols.

Legionella is a common inhabitant, usu-
ally in low numbers, of natural aquatic habi-
tats and of water supplies that meet drinking
water standards.117 A number of abiotic fac-
tors, of which temperature is the most impor-
tant one, significantly influence Legionella
survival and growth.118 Therefore, hot water
tanks, cooling systems, and towers,119 because
of their heat-exchanging function, serve as
bacterial “amplifiers”. Then, Legionella spp.
are able to colonize all parts of internal distri-
bution systems of hospitals, hotels, or build-
ings.120,121,122 Thus, these bacteria can poten-
tially infect susceptible persons through
aerosols created in showers bubble baths,
sinks, etc.

Evidence also indicates that amoebae and
other protozoa may be natural hosts and “ampli-
fiers” for legionellae in the environment. Inva-
sion and subsequent intracellular replication of
L. pneumophila within protozoa in the environ-
ment should play a major role in the transmis-

sion of Legionnaires’ disease.117,123,124,125,126 Re-
cently, it has been shown that viability and in-
fectivity of environmental noncultivable
L. pneumophila can be restored by intracellular
replication within protozoa.127 Intracellular
growth even enhances the infectious power of
L. pneumophila to human-derived cells.128 At
some stage after the ingestion of bacteria, amoe-
bae produce vesicles that contain high numbers
of legionellae, which may reach the alveoli of
the lungs and there constitute an infectious
dose.129

It appears that it is impossible to prevent
the contamination of water supply systems
and reservoirs with legionellae during ex-
tended periods of time by thermal eradica-
tion or hyperchlorination.124 The risk of in-
fection following exposure to Legionella
cannot be assessed and remains open to
speculation.130 Therefore, risk management
strategies should be introduced to control
Legionella at locations where a health risk is
recognized, that is, in water supply systems
of hospitals, in public spas, in swimming
pools, and whirlpools. Quantifying relative
risks for exposed robust vs. debilitated per-
sons is yet impossible. However, special mea-
sures of surveillance and intervention should
be introduced for people with reduced resis-
tance against respiratory disease, such as
elderly people, diabetics, etc.

D. Nontuberculosis Mycobacteria

The Mycobacterium tuberculosis complex
(M. tuberculosis, M. bovis, and M. africanum)
is composed of species pathogenic for man
and animal, and “nontuberculosis mycobacte-
ria” (NTMs) or “mycobacteria other than
M. tuberculosis”, include the formerly called
“atypical” mycobacteria. In a benchmark re-
view131 the evidence was summarized that some
nontuberculosis mycobacteria were able to
cause disease. The most common among these
include the Mycobacterium avium complex
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(MAC) composed of M. avium and
M. intracellulare clearly different species based
on DNA-DNA homology and 16S rRNA se-
quences.132 On the other hand, on the basis of
DNA homology and phenetic relatedness, it
has been proposed that M. avium, M. paratu-
berculosis, and the wood pigeon bacillus be
placed in one species with the designations
M. avium subsp. avium, M. avium subsp.
paratuberculosis, M. avium subsp. silvaticum,
respectively.133 It should be noted that a “MAIS”
complex, including M. avium, M. intracellulare,
and M. scrofulaceum has been occasionally
described. However, M. scrofulaceum is ge-
netically and phenetically distinct from
M. avium and M. intracellulare and is not a
member of the M. avium complex.134 Several
other reviews135,136,137,138 have contributed to an
increase in evidence that the environment and
more particularly water may be the vehicle by
which these organisms infect or colonize man.

The concern about nontuberculosis my-
cobacterial disease has been changed radi-
cally by the emergence of the AIDS epi-
demic throughout the world. Before the
AIDS epidemic and still today in immuno-
competent people, nontuberculous myco-
bacterial disease was primarily pulmonary
and the major pathogens were M. kansasii,
M. avium, and M. intracellulare. In the
absence of evidence of person-to-person
transmission, it was suggested that man is
infected from environmental sources via
aerosols.131 M. scrofulaceum was consid-
ered the causative agent of cervical lym-
phadenitis in children, and M. marinum
was associated with skin infections origi-
nating from aquaria or swimming pools.
However, with the advent of the AIDS
epidemic in the U.S. and Europe, in AIDS
patients and other immunodeficient indi-
viduals, nontuberculous mycobacterial dis-
ease is usually systemic with acid-fast or-
ganisms being isolated more commonly
from either blood or stool and caused prin-
cipally by M. avium. Therefore, infections

possibly occur via the lungs or gastrointes-
tinal tract. Thus, a wider range of sources
and routes of exposure has had to be in-
vestigated in AIDS patients. In Africa and
other areas of the developing world, where
the incidence of tuberculosis is high, the
rate of nontuberculous mycobacterial dis-
ease in AIDS people is low.139 In all prob-
ability AIDS patients die of other infec-
tions before they reach a stage at which
slow onset M. avium disease develops.

E. Occurrence of Nontuberculous
Mycobacteria and Transmission in
Water

In contrast to tuberculous bacteria that live
and grow in human tissue, nontuberculous bac-
teria are free-living saprophytes that are widely
distributed in the environment: water, soil, dust,
and aerosols.138,140,141 They have been recov-
ered from many piped and treated drinking
waters throughout the world.135,136,142,143,144,145,146

NTMs are not contaminants picked up from
another source, but residents able to survive
and grow in water.

The physiological characteristics of
nontuberculous mycobacteria have provided an
understanding of their ecological distribution;138

(1) they grow best at low pH values, that is,
between 5 and 5.5, and (2) microaerobically;138

(3) M. avium strains grow at 45˚C, unlike
M. intracellulare that can grow to only 42˚C;
(4) they grow equally well in water with a high
level of salt and are found in large numbers in
brakish swamps and estuaries; (5) they are hy-
drophobic and collect largely at air-water inter-
faces; (6) they are relatively resistant to heavy
metals and may be isolated from water by highly
polluted metals; (7) it has been shown that they
may be responsible for degradation of a wide
variety of xenobiotic organic coumpound; they
are capable of transforming compounds not
readily biodegradable such as humic and fulvic
acids;147 (8) their high resistance to disinfection
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by chlorine undoubtedly contributes to their
persistence in drinking water systems.138 Sev-
eral experimental data suggest a role for proto-
zoa present in water environments as host for
pathogenic mycobacteria, such as M. avium.148,149

These attributes favor their survival and even
occasional growth in natural waters such as
fresh water, salt water, and estuaries, in piped
and treated waters such as drinking and domes-
tic waters, swimming pools and aquaria, public
baths, and whirlpools.135,136,138,141,146,148 Increases
in the immunodeficient population and the preva-
lence of nontuberculous mycobacteria in water
systems contribute to an emerging problem of
waterborne mycobacterial infections.

Von Reyn et al.144 were among the first
to document a relationship between infec-
tions in AIDS patients, and water as the
source of the M. avium complex, examina-
tion of isolates from patients and from wa-
ters by PFGE showing identical patterns.
The study from Aronson et al.150 also sup-
ports the possibility that potable water is a
source of the nosocomial spread of M. avium
infections in hospitals. Recirculating hot
water systems, used in many institutions such
as hospitals, hotels, apartments, and office
buildings, may allow thermotrophic and chlo-
rine-resistant mycobacteria to persist and
colonize once they have been introduced from
municipal systems.136,142 Infection with
M. avium complex is thought to occur from
colonization of the gastrointestinal tract,151

although respiratory access has also been
documented.152 Therefore, hot water show-
ers may be the source of infection, but it
cannot be excluded that drinking water acts
as a possible source, because a common tap
may deliver both hot and cold water.153

Before the emergence of the AIDS epi-
demic, M. kansasii infection were generally
more common than M. avium complex in-
fections. The AIDS epidemic has had, in
most countries, a striking effect on the inci-
dence of disease caused by the M. avium
complex but not M. kansasii. Indeed, be-

tween 1984 to 1992 there has been a 10-fold
increase in the number of M. avium complex
infections compared with M. kansasii infec-
tions in England.154 M. kansasii disease in
immunocompetent patients (e.g., those with
AIDS) can be disseminated or exclusively
Pulmonary. There have been a number of
reports relating the occurrence of M. kansasii
in drinking water and shower heads.135,138,155,156

Therefore, like with the M. avium complex
infections, the water exposure route may be
possible.

M. paratuberculosis is the agent of
Johne’s disease in cattle. Several data have
suggested that M. paratuberculosis may be
also implicated with Crohn’s disease in hu-
mans, which is a chronic, invalidating, in-
flammatory disease of the gastrointestinal
tract.138 Epidemiologic studies of incidence
and geographic distribution of disease have
led Herman Taylor et al.157 to propose that it
is due to the transmission of M. paratuber-
culosis via water contaminated by cattle fe-
ces. If it is later proved that M. paratubercu-
losis or wood pigeon strains of M. avium158

are the responsible bacteria of disease, hu-
man infection would also occur through ex-
posure to contaminated water (e.g., drinking
or aerosols).

V. HELICOBACTER PYLORI

The assumption that Helicobacter pylori is
waterborne needs to be substantiated. Half of
the world’s population is infected with H. py-
lori, making it a pathogen of potentially great
significance. Although in the majority of cases,
infection is harmless, many infected people
develop chronic gastritis, peptic ulcer disease,
or gastric cancer.159 Although all evidence
shows that H. pylori is well suited to attach to
the gastric mucus and the gastric epithelium, it
is difficult, however, to establish whether this
ecological niche is the only one. Studies sug-
gest four transmission ways:160,161,162,163
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1. By the fecal-oral route, the bacterium,
excreted by feces, might colonize wa-
ter sources, becoming available to be
transmitted to man;

2. By the oral-oral route, H. pylori, which
colonizes dental plaque and saliva, may
be transmitted by saliva to other indi-
viduals (person to person transmission);

3. By the gastric-oral way, the typical mo-
dality of transmission in childhood, by
contaminated vomit;

4. Finally, by the gastric-gastric route, the
bacterium might be transmitted by en-
doscopic procedures.

The natural route of transmission is by
gastric juice, specifically as a result of epi-
demic vomiting in childhood.161,162 The dif-
ferent modalities of transmission may be
contemporaneously involved, however, be-
cause no one per se is able to explain the
widespread occurrence of H. pylori infec-
tion. Many studies have examined the possi-
bility that H. pylori is waterborne. H. pylori-
specific DNA was detected in sewage,164

surface water,165 and water supplies,166,167,168

although the organisms should be readily
inactivated by free chlorine.169 Actively re-
spiring bacteria were found by monoclonal
antibody in the majority of surface and shal-
low groundwater samples tested in the U.S.170

The survival capacity of H. pylori is related
to the noncultivable coccoid form that may
persist up to 20 to 30 days in water165,170,171

and also in food.172

Studies of the prevalence or seroprevalence
suggested that drinking water might play some
role in infection with H. pylori,168 which is
unconfirmed by other works.173,174 More and
more data show that H. pylori DNA can be
detected by PCR from feces samples of in-
fected individuals or patients with peptic ul-
cers,175,176,177,178 strongly suggesting fecal-to-
oral transmission. The detection of H. pylori
antigen in stools (Hp SA) brings new promise
for diagnosing H. pylori infection.179 The re-

sults obtained from H. pylori infection in an
experimental murine model also seem to sup-
port an oral-fecal route as the mode of trans-
mission.180

However, many characteristics make
H. pylori a special bacterium in the world of
human pathogens. A long way remains for
the epidemiology of transmission, while the
environmental occurrences of this pathogen
are better defined.

VI. PATHOGENIC PROTOZOA

The most prevalent enteric protozoa
associated with waterborne disease include
Giardia lamblia and Cryptosporidium
parvum.127,181,182,183,184,185 The last species,
Cyclospora cayetanensis, Isospora belli, and
many Microsporidian species appear like
emerging pathogen protists.186,187,188,189

A. Giardia, Cryptosporidium

As a result of proliferation and evolution
in the intestinal tract, cysts (Giardia), oo-
cysts (Cryptosporidium, Cyclospora, Isos-
pora) or infective spore (Microsporidia) are
produced and excreted in feces in a fully
infective form (Giardia, Cryptosporidium,
Microsporidia), or like immature stages
(Cyclospora, Isospora), which will shortly
complete their development in the environ-
ment acquiring their infectious power. Gia-
rdiasis has become the most common cause
of human waterborne disease in the U.S.
over the last 30 years. The first outbreak was
documented in 1965 at Aspen, Colorado.2

From then until 1996, 122 outbreaks involv-
ing 27,000 patients have been reported (Table
1).

The Apicomplexan Cryptosporidium has
only more recently been recognized as a
cause of waterborne outbreaks. The first
occurred in 1985 in Texas, with sewage-
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contaminated ground water as the source of
the infection.190 The outbreak in Milwaukee
was the largest documented waterborne in-
cident ever in the U.S. since 1920. An esti-
mated 403,246 cases of diarrhea were re-
corded over a span of 2 months, 4400 persons
were hospitalized and 69 deaths were
recensed among immunocompromised pa-
tients.191,192 From 1985 to 1996, 10 outbreaks
occurred in the U.S. that resulted in 419,914
cases of illness.184 Many outbreaks have also
been reported in the U.K.17 The size and
severity of waterborne cryptosporidiosis have
prompted investigations in depth about their
etiology and transmission. A striking result
was that many outbreaks of giardiasis and
cryptosporidiosis were found associated with
potable water, even when processing sys-
tems had been operated in accordance with
conventional standards of water treatment,
and while current microbiological standards
were met.183,181,193 Relying on Cryptospo-
ridium as a model protozoan pathogen, in-
vestigations by Casemore,181 Rose,194 Cur-
rent and Garcia,182 and Meinhart et al.183

attempted to clarify the transmission pat-
terns for these diseases, and the problems to
be overcome in their management and moni-
toring for compliance. These are briefly re-
viewed below.

1. A broad variety of animal reservoirs,
including farm livestock, pets, and wild-
life spread oocysts to man and the water
environment, particularly through agri-
cultural and human effluents, com-
pounded by an abundant rainfall. In ad-
dition, zoonotic and person-to-person
transmission occurs frequently. Oocysts
excreted by man and animals in large
numbers and in fully infective form con-
stitute probably the main risk factor for
the spread of Cryptosporidium in aquatic
environment.183,194,195 The contamination
of water sources may lead to penetration
of water treatment plants and drinking
water supplies.17,183,196

2. Cryptosporidium oocysts possess a sub-
stantially elevated resistance against dis-
infectants used in water decontamina-
tion, with the exception of ozone and
chlorine dioxide.197,198 The physical re-
moval of the parasite by coagulation
and filtration should, in theory, over-
come the risk. All outbreaks of water-
borne cryptosporidiosis that occurred
in the U.S. between 1985 and 1993,
however, hit communities where sur-
face water supplies had been filtered
and where processing equipment met
federal and state standards. According

TABLE 1
Enteric Protozoa and Waterborne-Disease Outbreaks
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to Gale,199 available evidence suggests
that many pathogenic microorganisms,
including cryptosporidia, are clustered
to some degree, even within small vol-
umes, exposing some drinking water
consumers to much higher doses than
others. By assuming that enteric patho-
gens are randomly dispersed, current
models underestimate the risk of con-
tracting infectious diseases.200 Model-
ing pathogen densities in drinking wa-
ter obtained from source water, and
performance criteria for treatments, for
example, removal of efficiencies calls
for more information on the degree to
which treatment process (e.g., filtration
and coagulation) affect pathogen clus-
tering. Also, the practice of recycling
filter backwash water can lead to break-
through of oocysts into finished wa-
ter.201 Finally, oocysts of Cryptospo-
ridium can attach to and persit in
biofilms, then be released by sloughing
into the water system. By such mecha-
nisms, some persons may be exposed
to infectious clusters, whereas the ma-
jority of consumers are not.

3. The infective dose of Cryptosporidium
in humans is not exactly known. Ex-
periments in human volunteers202,203 ob-
tained dose-response curves indicating
a median infective dose (ID50) of 132
oocysts and a minimum infective dose
of less than 30. A more recent study4

reported that the minimal infective dose
for immunocompetent volunteers can
vary between 10 and 1000 oocysts in
terms of the Cryptosporidium strain.
Studies using animal models showed
that as few as one to ten oocysts may
initiate an infection.183,204 However, IDs
vary strongly with the viability of oo-
cysts that depends on incurred environ-
mental stress, and on their virulence.
Nevertheless, the model of risk assess-
ment developed by Perz et al.185 tends

to demonstrate that transmission of oo-
cysts may occur at low levels of the
pathogen in drinking water.205 With
respect to the Milwaukee epidemic,
mathematical modeling combined with
epidemiological data suggest that per-
sons might indeed become infected af-
ter exposition to only one oocyst.192

Waterborne cases have been related,
however, in the absence of detectable
oocyst levels as in the Las Vegas out-
break.206

4. Recent molecular studies on Cryptospo-
ridium genetic diversity are changing
basically the usual views about the epi-
demiological pattern of cryptospo-
ridiosis. Until recently, C. parvum was
the species considered like responsible
for cryptosporidiosis both animals and
humans. Consequently, human crypto-
sporidiosis was usually considered a
typical zoonosis. In fact, on the basis of
isoenzymatic and molecular studies, two
genotypes (1 and 2) were revealed in
the species C. parvum. Genotype 1 was
found only in humans, whereas the
genotype 2 was found in both infected
humans and livestock. Moreover, cross-
infection studies have shown that the
bovine genotype infects readily mice
and cattle, while the human genotype
does not.207,208,209 Multilocus analysis
indicated that the two genotypes are
genetically isolated.210,211 These results
suggest the existence of two C. parvum
separate transmission cycles: one that
may occur in humans or animals, and
other that exclusively passes through
humans. However, subsequent studies
are revealing a situation that is still more
complex. Thus, in addition to the two
major bovine and human genotypes,
six other genotypes were identified in
C. parvum isolates from domestic or
wild mammals (dog, mouse, pig, ferret,
marsupial, and monkey). Furthermore,
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the species C. meleagridis (from birds),
C. felis, and C. muris have been identi-
fied in human patients from the New or
the Old World.212 Indeed, as only mo-
lecular methods allow species or geno-
type identification of human, animal,
or environmental Cryptosporidium iso-
lates,213 new Cryptosporidium tax-
onomy and cryptosporidiosis transmis-
sion patterns are being defined on
molecular bases.

5. In immunocompromised persons, par-
ticularly AIDS patients, symptoms of
illness are of a greater severity than in
immunocompetent people, which may
result in death of the former.185,183 Most
waterborne cryptosporidiosis outbreaks
have substantiated the more fulminant
reaction in AIDS patients. Among the
69 deaths in the Milwaukee outbreak
the majority of victims were AIDS pa-
tients.191

B. Cyclospora, Isospora,
Microsporidia

In addition to Giardia and Cryptosporidium,
Apicomplexa protozoa like Cyclospora, Isos-
pora, and many Microsporidian species are
emerging as opportunistic pathogens and may
have waterborne routes of transmission. Over-
all, recently species have received attention be-
cause of their high infection rates in AIDS pa-
tients.186,188,214,215

Before 1995, the parasite C. cayetanensis
was primarily described in gastroenteritis
among children living in poor sanitary con-
ditions and in travelers who had visited de-
veloping countries. Several outbreaks of
Cyclospora infection (or isolated cases) have
linked to waterborne transmission216,217,218

but in only one case216 were Cyclospora
oocysts demonstrated in drinking water. In
1996, the largest ever reported outbreak of
cyclosporiasis, affecting more than 1400

persons in North America219 was associated
with eating fresh raspberries from Guate-
mala. Most likely, fecal-polluted water, used
for spraying biocides on fruit, was the indi-
rect source. Notwithstanding technologic
limitations, Cyclospora have been recovered
in limited numbers from water sources and
vegetables.188,191

Unlike Cryptosporidium, which has
many known animal hosts,220 Cyclospora-
like organisms have been recovered from
ducks, chickens, dogs, and primates,187 per-
haps having been passed through these hosts.
The Apicomplexa Isospora belli is among
the protozoa that most commonly causes
gastroenteritis in immunocompromised hosts,
such as patients with AIDS.221 The water-
borne transmission of this parasite is pos-
sible and some epidemiological data suggest
this route.6

Microsporidia protists are obligate, in-
tracellular, spore-forming protozoan para-
sites. Their host range is extensive and in-
cludes most invertebrates and all classes of
vertebrates. Five microsporidian genera have
been associated with human disease prima-
rily in immunocompromised persons. They
are the following Enterocytozoon, Encepha-
litozoon, Trachipleistophora, Vittaformae,
and Nosema. Enterocytozoon bienensi, and
E. intestinalis are the most prevalent
Microsporidian parasite that cause gas-
trointestinal infection in AIDS patients;222,223

Microsporidia could also be a possible cause
of traveler’s diarrhea.224 Microsporidia may
disseminate to cause systemic infection as
well as ocular infection affecting cornea,
conjonctiva, liver, and biliary tract infection.
They have been recognized as a group of
pathogens that have potential for waterborne
transmission,14,225 and recently an evaluation
of methodologies was developed for the
detection of human pathogenic Microsporidia
in water.226 However, the study by Fournier
et al.227 shows a low rate of water contami-
nation by E. bienensi, suggesting that the
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risk of waterborne transmission to humans is
limited.

VIII. VIRAL PATHOGENS

The modern era in environmental virol-
ogy is characterized by the recognition of
hepatitis E virus (HEV) and the more recently
identified enteric virus capable of producing
waterborne outbreaks.228,229,230,231,232 More than
15 different groups of viruses, encompassing
more than 140 distinct types, can be found in
the human gut. They are excreted by patients
and find their way into sewage.

These viruses can be divided into three
categories with respect to their epidemio-
logical significance (Table 2).

1. Some are either nonenteropathogenic,
or cause illness unrelated with the gut
epithelium; these include poliovirus,
coxsackieviruses A and B, echovirus,
hepatitis A and E viruses, and some
other human enteroviruses.

2. A relatively small group of viruses has
been incriminated as the causes of acute
gastroenteritis in humans, and fewer
still have been proven to be true etio-
logic agents; they include Norwalk vi-
rus and other caliciviruses, rotaviruses,
astroviruses, and some enteric adenoviruses.

3. A third category encompasses putative
enteropathogens, such as coronavirus,
enterovirus, torovirus, parvovirus, and
reovirus, for which a causal relationship
is still unproven.228

TABLE 2
Human Viral Pathogens or Putative Pathogens That Can Be
Transmitted by Fecally Polluted Water
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The occurrence of a virus in a fecal speci-
men from a patient with gastroenteritis does
not prove that the virus is indeed the caus-
ative agent of diarrhea. The first step in an
attempted confirmation procedure relies on
establishing the identity of the virus by mo-
lecular biology (PCR), immunological as-
sessment, or after it has grown in culture.
The second step in demonstrating causality
is based largely on guidelines developed from
epidemiological knowledge over the years.233

A. Hepatitis

Hepatitis A virus (HAV) and Hepatitis E
virus (HEV) are associated with epidemics
and sporadic cases of hepatitis; they are trans-
mitted by the fecal-oral route, and therefore
sewage polluted water may constitute a
source.17

The most established virus group associ-
ated with waterborne outbreaks is hepatitis
A virus. It results in widespread epidemics
and constitutes an important cause of as-
ymptomatic infections in young children.
Mosley234 has summarized reports of 50
outbreaks from 1895 to 1964. Twenty-nine
of them show features supporting transmis-
sion by water. The highest incidence of
waterborne infectious hepatitis in the U.S.
has been in 1950 to 1960s and 1961 to 1970s
with, respectively, 18 outbreaks (757 cases
of illness) and 29 outbreaks (896 cases of
illness). It has declined since 1971 with 16
outbreaks in 1971 to 1980 and 11 outbreaks
in 1981 to 1990.2,8 Since 1991, only two
outbreaks caused by hepatitis virus A were
reported.235,236

Hepatitis E is much less widespread and
mostly confined to tropical and subtropical
areas. Infection can be more severe than
hepatitis A, with a high incidence of
cholestasis and increased mortality in preg-
nant women (20%). In 1991, the largest
waterborne outbreak of viral hepatitis E yet

reported occurred in Kasspur, India, with an
estimated total of over 79,000 cases of dis-
ease.237 Another waterborne outbreak oc-
curred in Delhi in 1955 to 1956 affected
approximately 29,300 persons.238 Such large-
scale hepatitis epidemics are invariably
waterborne and caused by HEV.239,240 Re-
cent evidence indicates that HEV might also
be prevalent at a low level in Europe.241

B. Viral Gastroenteritis

The recognized viral agents of gastroen-
teritis include rotavirus, calicivirus, astrovirus,
and some enteric adenovirus. Rotaviruses are
classified by antigenic groups A, B, and C,
subgroup, and serotype. Group A rotaviruses
are the most common cause of diarrhea dis-
ease in infants and young children. Group C
rotaviruses, like group A strains, principally
cause diarrhea in young children, age 4 months
to 4 years. In contrast to other human
rotaviruses, group B rotaviruses are respon-
sible predominantly for adult diarrheal dis-
ease, therefore designated as adult diarrhea
rotavirus or ADVR.

The most notorious of caliciviruses that
have been identified as a cause of gastroenteri-
tis was the agent termed Norwalk virus. This
originated from an outbreak of epidemic gas-
troenteritis in an elementary school in Norwalk,
Ohio, in 1968. Many other related viruses were
later classified by IEM as small round struc-
tured viruses (SRSV). These induded the Ha-
waii, Snow Mountain, Montgomery Country,
Taunton, Otofuke, Sapporo, and the Osaka
agents. Most of these have been identified as
calicivirus, like over 50 other SRSVs. The
family Caliciviridae includes the following four
genera: vesivirus, lagovirus, Norwalk-like vi-
ruses (NLV), and Sapporo-like viruses
(SLV).242 Viruses in the NLV and SLV genera
have been found only in humans, but recent
data suggest that calves and pigs may be reser-
voir hosts of NLVs.232 Genetically, the human
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caliciviruses (Hu CVs) contains at least three
genetic clusters or genogroups (GC), that is,
GGI, GGII NLV, and GGIII SLV.243 How-
ever, recently accumulated sequences of HuCV
strains indicate these genogroups can be fur-
ther divided.244,245,246,247,248

Some SRSVs from infant stools with di-
arrhea were named astrovirus for the charac-
teristic five- or six-pointed star configuration
that was evident on the surface of the viral
particles. To date, seven serotypes of human
astroviruses (HAstV) have been identified by
enzyme immuno-assays immunoelectron mi-
croscopy or reverse transcriptase-polymerase
chain reaction (RT-PCR).249,250 Phylogenetic
analysis identified two genogroups A and B
correlated with serotypes.251

There are currently 47 serotypes of hu-
man adenoviruses, subdivided into six sub-
groups A through F. Many types of
adenoviruses have been isolated from stools,
but only types 40 and 41 have been consis-
tently associated with gastroenteritis.252 The
two serotypes from the F subgroup are col-
loquially referred to enteric adenoviruses
(EAd).

Rotaviruses are one of the most impor-
tant causes of infantile gastroenteritis in the
world. If untreated, rotavirosis can result in
severe dehydration and death, especially in
developing countries. Calicivirus and
astrovirus gastroenteritis are generally mild,
typically explosive but self-limited, with
symptoms lasting from 1 to 4 days after a
mean incubation time of 2 days. The clinical
picture of adenovirus gastroenteritis is simi-
lar to that of rotavirosis, but the incubation
period lasts 8 to 10 days.

In American statistics viral enteritis out-
breaks of drinking water occur infrequently:
10 between 1971 and 1980, 15 between 1981
and 1990, 1 from 1991 to 1996. Because of
their low incidence they have not been in-
cluded in Figure 2. However, it is more than
likely that a marked fraction of gastroenteritis
of unidentified origin (AGI) is indeed associ-

ated with a viral aetiology (Section II). In
recent years, the predominant part of SRSVs,
especially NLVs, was revealed in several
waterborne outbreak reports.253,254,255,256 Epi-
demiological studies of seroprevalence con-
firm that a large number of infections owing
to Norwalk viruses occur throughout the
year.257 Data from Lodder et al.229 suggest
that NLVs may exceed rotaviruses in impor-
tance as a cause of illness in the Netherlands.
The sensitive new molecular techniques based
on the reverse transcriptase-polymerase chain
reaction (RT-PCR) available now have made
it possible to detect low levels of a wide
variety of enteric viruses. The results ob-
tained154,231,258 also support epidemiological
data that suggests low-level transmission of
viruses by drinking water supplies.

C. Other Candidate Viruses

A relatively small group of viruses
has been incriminated as the causes of
acute gastroenteritis in humans, but while
most of them could be identified in fecal
specimens from patients with diarrhea,
not all were necessarily the etiologic
agent. Coronaviruses have been associ-
ated to humans gastroenteritis259 to neo-
natal necrotising entero-colitis260 and were
found regularly in the feces of patients
with nonbacterial gastroenteritis.261 De-
spite 2 decades of research to assess their
causality, the results so far have been
inconclusive. Other viruses such as
picobirnaviruses, toroviruses, enterovi-
ruses, reoviruses, and parvoviruses were
also identified in fecal specimens from
children and adults with gastroenteritis,
and HIV-infected patients.233,249,261,262

However, their role as an etiologic agent
of diarrhea in the human population re-
mains to be determined because many are
also found in healthy controls. More re-
cently, immune response has been intro-
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duced as a parameter in such investiga-
tions.233

D. Factors Affecting Viral Infections

Certain characteristics of enteric viruses
point to their potentially important role in
waterborne outbreaks.

1. More than 140 types of human or ani-
mal enteric viruses can be found in sew-
age (Table 2). Some of them have
proven enteropathogenicity, other just
being putative enteropathogens in hu-
mans.233 Most of the novel viral agents
(caliciviruses, astroviruses) found in
human diarrhea specimens are known
to cause gastroenteritis in different ani-
mal species.

2. Viruses, found in the feces of symp-
tomatic or asymptomatic hosts attain
numbers up to 1010 infectious doses per
gram, excreted for 1 to 4 weeks. The
number of viruses currently detectable
in raw sewage can reach 102 to 103

infectious units per liter.
3. The wide distribution of enteric viruses

is demonstrated by sero-epidemiologi-
cal surveys of North American popula-
tions: most of the adults testing posi-
tive.257

4. Many methods have been applied for
eliminating viruses from water; all
marred by the small size (20 to 100
nm), multiplicity of the virions, their
resistance being much higher than that
of bacteria, and various analytical short-
comings, such as the variation in mi-
crobial load of raw water, seasonal ef-
fects, and no random dispersion of
pathogens within large volumes. After
drinking water treatments, viruses are
still occasionally detectable.263 The
main limitation of water treatments is
that they may promote further cluster-

ing of pathogens, exposing some wa-
ter-drinking consumers to much higher
doses than others.

5. The number of viruses required to ini-
tiate infection can be estimated in ani-
mal models or human volunteers. Un-
der appropriate conditions, as little as
one infectious particle of rotavirus can
trigger disease in animal264 or human
models.265 From studies in volunteers
with Norwalk and related viruses,266,267

astroviruses,268 enteroviruses,265 it ap-
pears that the number of virions needed
to infect man or animals is low in terms
of infectious units: Payment269 rightly
stated, “The cell culture infectious unit
is only a fraction of the real number of
infectious viruses”. For rotaviruses, the
proportion of culturable among elec-
tron microscopically detectable viruses
can be as high as 1:1000 or more.270 In
the most enteropathogenic bacteria the
ID50 are generally high, on the order of
106 to 108 except some species (cf. Sec-
tion II).

6. In some waterborne outbreaks of gas-
troenteritis, viruses were isolated from
water that met current bacteriological
standards and contained an adequate
chlorine level.2,269,271,272,273 The isolation
of viruses from samples of “bacterio-
logically safe” potable water indicates
that bacteriological indicators are inad-
equate to monitor the occurrence of
viruses in water.

IX. GASTROENTERITIS OF
UNDETERMINED ETIOLOGY

In the majority of outbreaks of acute
gastroenteritis related in the U.S., the etiol-
ogy could not be determined. Between 1940
to 1950, 213 outbreaks were recorded and
177 in 1970 to 1980. Because waterborne
outbreak reporting system is voluntary, the
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differences observed in the frequency of their
occurrence might be largely attributed to poor
recording by State and Local Health Depart-
ments.2 Although, in principle, many inci-
dents could have a bacterial or protozoan
etiology, many of these outbreaks could be
of viral origin.

A bacterial cause is relatively easy to
identify, while filtration and disinfecting
procedures effectively eliminate these agents.
Also, some outbreaks were clinically and
epidemiologically consistent with Norwalk-
like virus infection.9 Finally, the detection of
enteric viral pathogens was impossible at
that time. Even in 1970 to 1980 Giardia and
Cryptosporidium were only rarely recognized
as etiologic agents.

X. ENDEMIC GASTROENTERITIS

A few studies carried out in Canada and
later in France seem to point at endemic
infections associated with drinking water
complying with bacteriological standards.
Payment et al.274,275 in Montreal, followed a
randomized trial design in order to quantify
the health hazard, which remains after a stan-
dard, well-conducted treatment of bacterio-
logically contaminated surface water has
been completed. This study showed that
municipal tap water drinkers had a signifi-
cantly higher rate of acute gastrointestinal
illnesses (35%) than those provided with a
domestic water filter, despite that the treat-
ment used in the community water system
included predisinfecting, flocculation, sand
filtration, ozonation, and final chlorine or
chlorine dioxide disinfecting procedures
meeting the North American microbiologi-
cal and physicochemical water quality stan-
dards. Payment et al.276 suggest that het-
erotrophic, potentially pathogenic agents, for
example, Bacillus spp., could be responsible
for these incidents. This assumption has never
been confirmed, however, while this dispro-

portionately high percentage of Bacillus in
the studied water supplies has not been found
by other authors.277

In order to assess the residual health risk
after mere disinfecting of piped water pro-
cessed from ground water, an epidemiologi-
cal study was conducted in France by Zmirou
et al.278 The crude incidence rate of diarrhea
was 1.4 times more frequent among children
drinking treated water than among controls.
The morbidity observed in this study com-
prises small sporadic outbreaks, along with
an endemic occurrence of acute gastrointes-
tinal infection. Even when days with ‘epi-
demics’ were excluded from the analysis,
the routine occurrence of acute gastroenteri-
tis events is still greater in relying on water,
suggesting that microbiological contamina-
tion is continuous.

In Vermont, where giardiasis was the
most common disease with annual incidence
rates higher than other states, waterborne
transmission was suggested to be an impor-
tant cause of non-outbreak related cases;
indeed, rates of infection were highest in
persons that drank nonfiltered city water.279

These observations have been confirmed by
Fraser and Cook280 in New Zealand and by
Dennis et al.281 in New Hampshire, where
drinking untreated surface water and recre-
ational water exposure were strongly associ-
ated with endemic giardiasis.

Cryptosporidium spp. probably present
enhanced endemic risks compared with Gia-
rdia spp., because of their more frequent
occurrence in surface water and higher resis-
tance to water purification technology, in-
cluding filtration. Perz et al.185 used a risk
assessment model to examine the potential
role of tap water in endemic infections with
Cryptosporidium spp. In comparing the
model output with surveillance data for
cryptosporidiosis, the analysis showed that
low-level transmission via tap water can rep-
resent an important exposure route for en-
demic Cryptosporidium infection.
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Endemic transmission of protozoan in-
fections results from the low infectious dose
of these organisms for man, and their hetero-
geneous distribution in clusters in treated
waters. Similarly, enteric viruses might be
involved in outbreaks of endemic waterborne
gastroenteritis. On the other hand, a similar
role for bacterial enteropathogens seems less
likely because their infectious dose is usu-
ally higher and their resistance to water pu-
rification treatments lower.

These data demonstrate that management
of endemic transmission of waterborne in-
fections call for many supplemental epide-
miological and analytical data. Such infor-
mation has to be provided by prospective
studies on populations that have been ex-
posed to different levels of pathogens, in-
cluding control subjects. The outcome of
such investigations may well call for im-
provements in customarily applied water
purification treatments aiming at an uncon-
ditionally safe drinking water supply.

XI. TAKING INTO ACCOUNT
EXPOSURE OF
IMMUNOCOMPROMISED SUBJECTS

In all waterborne cryptosporidiosis outbreaks
it has been observed that immunocompromised
persons, such as AIDS patients, are at greater
risk than immunocompetent persons for devel-
oping severe illness, and for a potential lethal
outcome. In the Milwaukee epidemic,192 at least
69 fatalities were recorded amongst immuno-
compromised patients. In the outbreak that oc-
curred in 1994 in Clark County (Nevada),193,282

63 of the 78 laboratory confirmed cases were in
HIV-infected adults, among whom 32 died.
Thus, current data indicate that during water-
borne outbreaks immunocompromised persons,
such as AIDS patients, can acquire crypto-
sporidiosis more likely than immunocompetent
persons, while illness is more severe and life
threatening.

Not surprisingly, more recently reported
cases of cyclosporiasis, and diarrhea with Isos-
pora or Microsporidia in stools include
overrepresentation of immunocompromised
patients with AIDS.184 This follows the pattern
of substantially enhanced risks for the classic
group of debilitated subjects: the very young,
old, pregnant, and immunocompromised
(YOPI) category.200 It is striking that YOPIs
seem to incur more risks, particularly from
exposure to protozoa, more specifically
Cryptosporidium spp. than from other patho-
gens. This prompted Public Health Authorities
to launch an information campaign targeted at
YOPIs recommending to take specific mea-
sures aiming at reducing the risk for water-
borne cryptosporidiosis, including boiling wa-
ter before use, using water filters, or bottled
water and avoiding swimming in lakes, rivers,
or public swimming pools. This does not ex-
empt these authorities, however, from the ob-
ligation to manage health risks associated with
low-level oocyst contamination of fully treated
drinking water. Such efforts should be guided
by surveillance systems and by epidemiologic
studies designed for assessing the public health
significance of low levels of Cryptosporidium
oocysts.

SUMMARY

Many classes of pathogens excreted in
feces are able to initiate waterborne infec-
tions. There are bacterial pathogens, includ-
ing enteric and aquatic bacteria, enteric vi-
ruses, and enteric protozoa, which are
strongly resistant in the water environment
and to most disinfectants. The infection dose
of viral and protozoan agents is lower than
bacteria, in the range of one to ten infectious
units or oocysts.

Waterborne outbreaks of bacterial origin
(particularly typhoid fever) in the develop-
ing countries have declined dramatically from
1900s. Therefore, some early bacterial agents
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such as Shigella sonnei remains prevalent
and new pathogens of fecal origin such as
zoonotic C. jejuni and E. coli O157:H7 may
contaminate pristine waters through wildlife
or domestic animal feces. The common fea-
ture of these bacteria is the low inoculum (a
few hundred cells) that may trigger disease.
The emergence in early 1992 of serotype
O139 of V. cholerae with epidemic potential
in Southeast Asia suggests that other sero-
types than V. cholerae O1 could also getting
on epidemic.

Some new pathogens include environ-
mental bacteria that are capable of surviving
and proliferating in water distribution sys-
tems. Other than specific hosts at risk, the
general population is refractory to infection
with ingested P. aeruginosa. The signifi-
cance of Aeromonas spp. in drinking water
to the occurrence of acute gastroenteritis
remains a debatable point and has to be evalu-
ated in further epidemiological studies.
Legionella and Mycobacterium avium com-
plex (MAC) are environmental pathogens
that have found an ecologic niche in drink-
ing and hot water supplies. Numerous stud-
ies have reported Legionnaires’ disease
caused by L. pneumophila occurring in resi-
dential and hospital water supplies. M. avium
complex frequently causes disseminated in-
fections in AIDS patients and drinking water
has been suggested as a source of infection;
in some cases the relationship has been
proven.

More and more numerous reports show
that Helicobacter pylori DNA can be ampli-
fied from feces samples of infected patients,
which strongly suggests fecal-to-oral trans-
mission. Therefore, it is possible that H. py-
lori infection is waterborne, but these as-
sumptions need to be substantiated.

Giardiasis has become the most com-
mon cause of human waterborne disease in
the U.S. over the last 30 years. However, as
a result of the massive outbreak of water-
borne cryptosporidiosis in Milwaukee, Wis-

consin, affecting an estimated 403,000 per-
sons, there is increasing interest in the epide-
miology and prevention of new infection
disease caused by Cryptosporidium spp. as
well as monitoring water quality. The trans-
mission of Cryptosporidium and Giardia
through treated water supplies that meet water
quality standards demonstrates that water
treatment technologies have become inad-
equate, and that a negative coliform no longer
guarantees that water is free from all patho-
gens, especially from protozoan agents. Sub-
stantial concern persists that low levels of
pathogen occurrence may be responsible for
the endemic transmission of enteric disease.
In addition to Giardia and Cryptosporidium,
some species of genera Cyclospora, Isos-
pora, and of family Microsporidia are emerg-
ing as opportunistic pathogens and may have
waterborne routes of transmission.

More than 15 different groups of viruses,
encompassing more than 140 distinct types
can be found in the human gut. Some cause
illness unrelated with the gut epithelium, such
as Hepatitis A virus (HAV) and Hepatitis E
virus (HEV). Numerous large outbreaks have
been documented in the U.S. between 1950
and 1970, and the incidence rate has strongly
declined in developing countries since the
1970s. Hepatitis E is mostly confined to tropi-
cal and subtropical areas, but recent reports
indicate that it can occur at a low level in
Europe. A relatively small group of viruses
have been incriminated as causes of acute
gastroenteritis in humans and fewer have
proven to be true etiologic agents, including
rotavirus, calicivirus, astrovirus, and some
enteric adenovirus. These enteric viruses have
infrequently been identified as the etiologic
agents of waterborne disease outbreaks, be-
cause of inadequate diagnostic technology,
but many outbreaks of unknown etiology
currently reported are likely due to viral agents.
Actually, Norwalk virus and Norwalk-like
viruses are recognized as the major causes of
waterborne illnesses world-wide.
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The global burden of infectious water-
borne disease is considerable. Reported num-
bers highly underestimate the real incidence
of waterborne diseases. The most striking
concern is that enteric viruses such as
caliciviruses and some protozoan agents, such
as Cryptosporidium, are the best candidates
to reach the highest levels of endemic
transmission, because they are ubiquitous in
water intended for drinking, being highly
resistant to relevant environmental factors,
including chemical disinfecting procedures.
Other concluding concerns are the enhanced
risks for the classic group of debilitated sub-
jects (very young, old, pregnant, and
immunocompromised individuals) and the
basic requirement of to take specific mea-
sures aimed at reducing the risk of water-
borne infection diseases in this growing,
weaker population.
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