

Histopathological features of the infection by the myxosporean Zschokkella hildae in the kidney of Atlantic cod

B. Gorgoglione* & C. Sommerville

Institute of Aquaculture,
University of Stirling, Stirling, Scotland, UK

Introduction

- Atlantic cod is a common host for myxosporeans, few reported as pathogens
 eg. Myxobolus aeglefini Auerbach, 1906 (Kabata, 1957)
- Zschokkella hildae Auerbach, 1910 is a common myxozoan parasite of Atlantic cod; an invertebrate host is unknown to date
- The morphology, phylogeny and infection dynamics have been reported in detail by Holzer *et al*, 2010
- · It is located in the urinary system: collecting ducts, ureters and urinary bladder
- In cultured cod, double infections with Gadimyxa spp. Køie, 2007 are common (Holzer, 2010)

Myxospores

Objectives

To assess the impact of Zschokkella hildae infection on farmed Atlantic cod (Gadus morhua) using histopathology

Materials & Methods

Fish conditions

- 200 healthy, 1+ farmed fish from the West coast of Scotland and North of England Mixed for 12 months in a tank-based research facility
- Seawater flow-through system, filtered to 60µm Ambient temperature, seasonal range 6-16 °C

Histology

- Tissue fixation in 4% NBF Tissue stains: H&E, Cason's trichrome and Gram's

Single-round PCR assay

- From formalin-fixed paraffin-embedded tissues (Crumlish, 2007; Santos, 2008)
- Specific primers targeted to Z.hildae 18S rDNA sequences (Holzer, 2010)

- Double-label in situ hybridization (Holzer, 2010) Simultaneous detection of both Z.hildae & G.atlantica (Holzer, 2010)

Conclusions

- Z.hildae 100% prevalence
- Dynamic of host infection
- First evidence of Z. hildae histozoic extrasporogonic plasmodia
- Parasites directly attacked by Rodlet cells
- Mesonephron degeneration/regeneration
- No evident external signs of disease

Impact

- No clinical signs of disease
- Minimal tissue damage:
 - degeneration of tubules and collecting ducts most significant

The mesonephron regeneration may explain the lack of evident gross impact on host

- Rodlet cells seem to be the most important weapon against Z. hildae
- No clear evidence of inflammatory or immune response despite...

Aknowledgements

- Dr Astrid Holzer
- Dr Rodney Wootten
- Dr Andrew Tildesley
- Snieszko Student travel grant

