High Ammonia Concentration Increases Survival of Channel Catfish Experimentally Infected with Flavobacterium columnare

Andrew Mitchell and Bradley Farmer

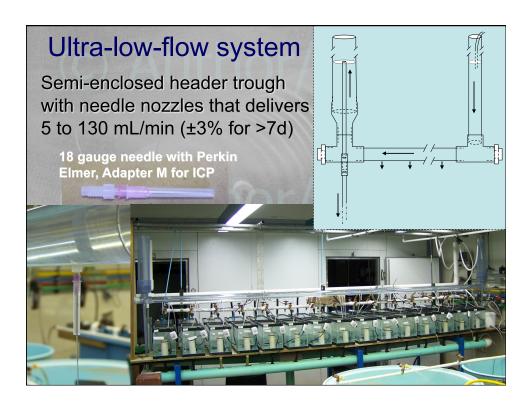
Harry K. Dupree Stuttgart National Aquaculture Research Center United States Department of Agriculture, Agricultural Research Service Stuttgart, Arkansas

Introduction

- It is generally accepted that elevated ammonia levels in the water serve to:
 - stress fish (Noga 1996; Hoole et al. 2001)
 - cause fish to become more susceptible to bacterial infections (Ferguson et al. 1992)
 - cause greater mortality of infected fish (Walter and Plumb 1980; Chen et al. 1982; Amin et al. 1988)

Introduction

- Opposite observation -- preliminary columnaris challenge tests in our ultra-low-flow systems
 - When total ammonia nitrogen (TAN)
 exceeded 10 mg/L -- greater fish survival
- Significant increase in survival of Lost River suckers infected with columnaris when unionized ammonia concentrations were increased to about 0.4 mg/L. (Morris et al. 2006)


3

Purpose

 In order to further investigate the effects of ammonia on the survival of fish infected with a bacterial disease, a study was set up to determine if a single high level of ammonia could limit an experimental *F.* columnare infection in channel catfish and reduce mortality.

Methods

- Channel catfish (~7 g each) stocked at 50 g/L were placed in sixteen—18 L tanks containing 10 L of aerated water
- The tanks received filtered well water at a rate of about 4 water exchanges/day from an ultra-low-flow water delivery system.

Water quality

- Water temperatures -- 26.3 to 27.3°C
- pH -- 7.3 to 8.2
- Dissolved oxygen -- 4.4 to 8.3 mg/L
- Total alkalinity -- 217-218 mg/L
- Total hardness -- 119-120 mg/L
- Chlorides -- 176 mg/L

Experimental design

- Two identical trials
- Four treatments
 - Treatment 1 control (no bacteria or ammonia)
 - Treatment 2 ammonia only
 - Treatment 3 bacteria only
 - Treatment 4 both ammonia and bacteria
- Four reps/treatment

Ammonia exposure

- 15 mg/L TAN exposure -- NH₄Cl stock solution (46 mg/mL)
 - 10 mL of stock solution/10 L of water/tank
- Immersion flush exposure -- chemical added with continuous water flow in each tank; one water exchange in about 6 h.

9

TAN determinations

(Hach DR/4000V spectrophotometer using Nessler Method 8038)

- Trial 1 water samples were taken at 1 min, 1h, 2h, 3 h, 4 h, and 6 h postexposure.
- Trial 2 20 min, 1 h, 2 h, 3 h, 4 h, 6 h, 30 h, and 56 h.
- Unionized ammonia was determined from TAN, pH and temperature for Trial 2.

F. columnare challenge

- Bacterial suspension was incubated at 28°C for up to 24 h in FCGM (Farmer 2004).
- When suspension reached an absorbance of 0.70 at 550 nm about 60 mL of bacterial suspension was added to each tank immediately after ammonia was added.
- A 10 ml sample was removed from the broth to determine the CFU count.
- Bacterial density/tank was approximately
 1.0E08 bacteria/mL of water

11

In vitro studies - MIC

- *F. columnare* suspension in dilute Mueller Hinton broth was pipetted into a 96 micro well plate
- Ammonium chloride was added using two fold dilutions yielding - 60, 30, 15, 7.5 mg/L TAN.
- Done in triplicate with positive and negative controls.
- Incubated at 28°C for 24 h
- Read visually for the presence or absence of growth.

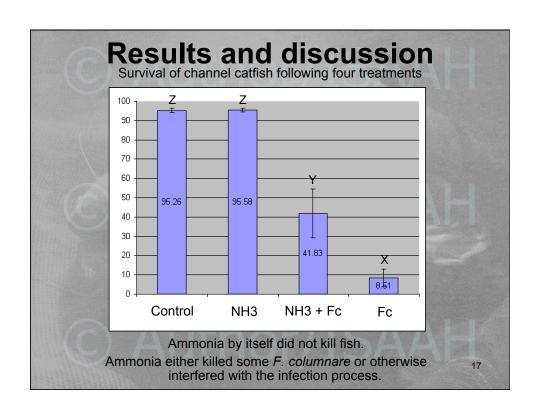
In vitro studies - CFU

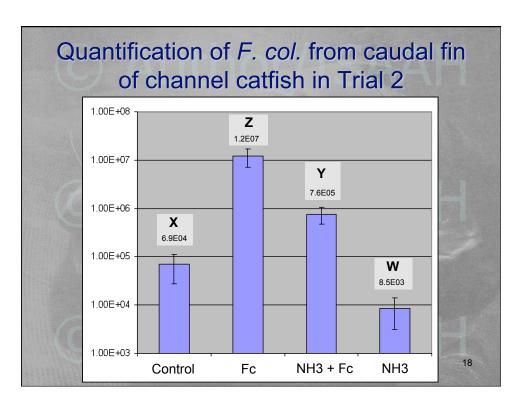
- Ammonium chloride was added to an F. columnare suspension to give a concentration of 15 mg/L and 30 mg/L TAN.
- These were incubated 6h at room temp.
- Samples were removed, serially diluted and plated on Ordals agar for CFU counts.

13

Identification and quantification of *F. columnare* using Roche Lightcycler 480 Real Time PCR system

- Caudal fin (CF) samples were taken at 24 h post-exposure from 3 fish showing no obvious signs of disease from each tank in every treatments
- Genomic DNA was extracted from CF tissue
- Template DNA was used for pathogen detection and quantification (Panagala 2007)


Identification and quantification cont.


- qPCR run in duplicate for each genomic DNA sample with standards included on each plate and a no template control
- Data -- based on a standard curve generated from previously counted bacterial samples.
- The standard curve efficiency was 1.94 and the r2 was 0.98

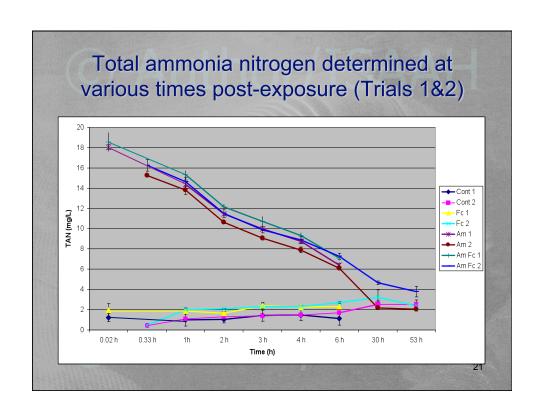
15

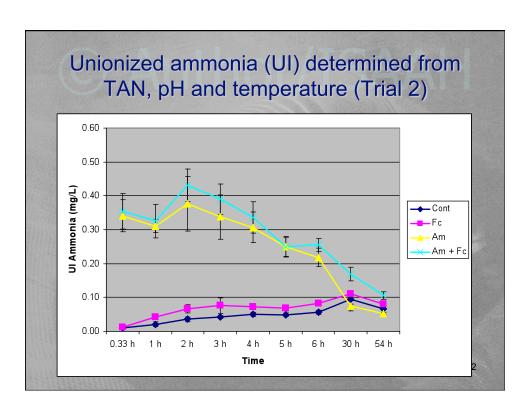
Statistics

- Trial and trial X treatment interaction effects between the two trials were not significantly different therefore survival data from the two trials were combined.
- Arcsine transformed data for percent survival, log transformed QPCR, and CFU data were normally distributed with equal variances
- A GLM ANOVA was performed on the transformed survival, QPCR, and CFU data. Differences among treatment means ($P \le 0.05$) were separated using the Tukey–Kramer procedure for pair-wise comparisons.

In Vitro studies - MIC

TAN Treatment	F. col. growth
control	+
7.5 mg/L	+
15 mg/L	+
30 mg/L	+ (slight)
60 mg/L	-


19


In Vitro studies

Number of colony forming units (CFU) following a 6-h exposure to TAN treatments

Different letters indicate significant differences

TAN Treatment	# of CFU	Reduction from control
0 mg/L	1.95E10 Z	
15 mg/L	5.18E09 Y	74%
30 mg/L	3.40E09 Y	84%

Summary

- The TAN (~15 mg/L) and UI (~0.4 mg/L) concentrations produced in this study did not overtly affect the health of the catfish
- The ammonia concentration used in these trials was effective in limiting the onset of a columnaris infection in channel catfish.

23

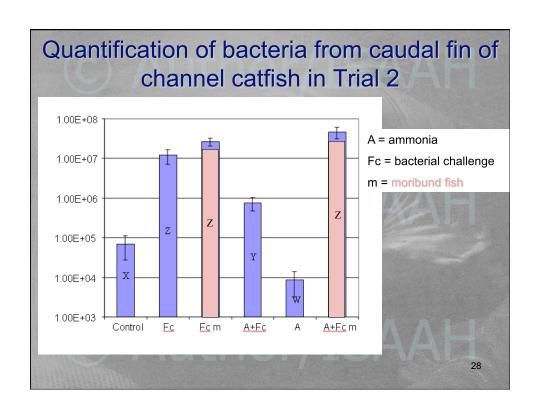
Summary

- Channel catfish challenged with F.
 columnare and treated with ammonia had
 significantly higher survivals than those
 receiving only a bacterial challenge
- Ammonia significantly reduces the *F. columnare* numbers found in fish tissue
- Apparently healthy fish (control group) had mean F. columnare counts of 6.9X10⁴

Further study needed

- To determine if the ammonia exposure interfered with the attachment of the bacteria to fish tissues
- ??To determine the usefulness of NH₄Cl or another ammonia compound as a management method for columnaris.
 - Optimal rates, safety margins, and contraindications need to be determined.

25


Acknowledgements

Matt Barnett for his help throughout the course of the two trials

TAN toxicity

 Preliminary toxicity tests (20 fish/rep; 3 reps) – immersion flush treatment (4 exchanges/d)

TAN concentration	UI concentration	% fish survival
24 mg/L	0.49 mg/L	100%
49 mg/L	1.25 mg/L	88%
61 mg/L	2.41 mg/L	20%

